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An r-adaptive finite-element method based on moving-mesh partial differential
equations (PDEs) and an error indicator is presented. The error indicator is obtained
by applying a technique developed by Bank and Weiser to elliptic equations which
result in this case from temporal discretization of the underlying physical PDEs on
moving meshes. The construction of the monitor function based on the error indicator
is discussed. Numerical results obtained with the current method and the commonly
used method based on solution gradients are presented and analyzed for several
examples. © 2001 Academic Press
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1. INTRODUCTION

For problems exhibiting large variations in spatial and temporal scales, such as tf
with boundary or internal layers, shock waves, and blowup of solutions, adaptive meth
are indispensable for their efficient numerical solution. The three major types of adap
finite-element methods are the p-, andr -methods. For thB-method, the mesh is refined
or coarsened by adding or deleting grid points, while the adaptivity ofptheethod is
achieved by changing the degree of the polynomial approximation used in each elen
For ther -method, or the moving-mesh method, the mesh connectivity is kept unchanged
the grid points are shifted throughout the region as needed to best approximate the soll
globally.

There has been extensive study of theand p-methods, and they have been shown
to be reliable and efficient for the finite-element solution of partial differential equatiot
(PDEs), particularly steady-state problems. Thmethod has been less popular, largely
because of the difficulty in developing a general and robust moving-mesh method in hig
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dimensions. Nevertheless, there are distinct potential advantages tonisthod: e.g., the
relative ease of coding in comparison with mesh subdivision, which requires complica
tree data structures; no need of interpolation between different levels of mesh refinem
which can cause extra numerical dissipation [15]; the ease of incorporating the metho
existing codes based on fixed grids; and the simplicity in principle of computing the me
using continuous time integration. Indeed, continuously changing the positions of g
points is naturally consistent with the evolutionary features of time-dependent problel
Moving-mesh methods have been shown to be very successful for large classes of
dimensional problems (e.g., see [21, 27]) and for some higher dimensional problems |
13-15, 31].

There are several ways to accomplishdaptivity. In one dimension, most of the proce-
dures rely on the so-called equidistribution principle [10, 21, 24]. However, the situation
not so straightforward in higher dimensions. Miller [27] proposed a moving finite-eleme
method which relocates the grid points by minimizing the residual (see [4] for a detall
description). Liao and co-workers developed a moving-mesh method based on defor
tion mappings (e.g., see [31]). Huang and Russell [25] developed a moving-mesh met
based on a set of parabolic PDEs, so-called moving-mesh PDEs (MMPDES). The met
is formulated on a commonly used variational framework and involves minimization
a quadratic functional describing mesh properties such as concentration, alignment,
orthogonality.

A key issue for the moving-mesh strategy is the selection of a so-called monitor functi
to use in the variational formulation which will properly control the mesh properties ar
interconnect the mesh and physical solution [11, 32]. A common practice has been to
the gradient of the numerical solution, so that the mesh is concentrated in regions wt
the solution changes rapidly. This has proven successful, for instance, in solving a nun
of nontrivial reaction—diffusion, convection—diffusion, and fluid flow problems [11, 13
15]. Nevertheless, as has often been pointed out (e.g., seskabod Rheinboldt [3]), a
more natural and general approach than using gradients to locate the regions needing
resolution is to define the monitor functions directly in terms of error estimates. Indee
it is common to employ a posteriori error estimates withand p-refinement to solve
steady-state problems by finite-element methods. For time-dependent problems, it is
possible to derive error estimates; however, as evident from the analysis of Johnson
co-workers, it is much more challenging to generate efficient and reliable error estima
due to the coupling of errors in the space and time directions—see [17, 26]. The difficulty
compounded here by the introduction of a convection term from the mesh movement, wk
makes classical error estimates for elliptic problems less applicable (see [33, 34]). Limi
work has been done using a posteriori error estimates in the context of mesh mover
for one-dimensional problems [1, 8], but to our knowledge, such strategies have not b
attempted in higher dimensions. (While our concern is parabolic problems, itis worth noti
that global error estimation for hyperbolic problems is also complicated by the combinat
of local time and space discretization errors [29, 30], although in certain cases succes
solving the error estimation problem globally is achieved [22].)

The main purpose of this paper is to consider @utaptive finite-element method based
on a moving-mesh PDE approach to solving parabolic PDEs, where the monitor funct
is defined in terms of an error indicator. The idea behind the method is straightforwa
We first discretize the parabolic problem in time. At each time level, we solve ellipt
equations, for which an error estimate for the numerical solution of the discretized probl
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is available. This error indicata(x, t) is calculated by the a posteriori error estimation
technique developed as in [5, 6, 16, 28]. The monitor func@dr, t) (see Section 2) is
defined in terms of this error indicator, e.g., by

G(x, 1) = V1+ a(&x t/lIe¢, tle)? 1,

whereq is a parameter balancing the relative costs of solving the moving-mesh PDE :
the physical PDE. The moving-mesh PDE is then solved to determine an updated ada
mesh for the next time level. Finally, the physical problem is integrated to get the numeri
solution at this new time level. Compared to a moving-mesh method with the moni
function defined in terms of the gradient of humerical solutions, the present appro:
appears to be more robust since it automatically locates the regions where higher nume
resolution is needed. In addition, this approach generally gives more accurate results.

There are some limitations to this moving-mesh approach. For one, the error indice
only takes into account the local errors arising from the spatial discretization, insteac
the global error from both the space and time discretizations—our experience indicates
the strategy is most successful when these are balanced. Also, it is generally impossik
perform error control without the capability to change the number of mesh points a
thereby the mesh topology. These important issues are discussed in later sections ar
topics of our current research.

Anoutline ofthe paper is as follows. In Section 2 we give a brief description of the movin
mesh method based on moving-mesh PDEs. In Section 3 we introduce the general m
problem to be considered and the finite-element method for moving-meshes. In Secti
we describe the a posteriori error estimation technique for elliptic equations and const
the monitor function using the error estimate. In Section 5, some numerical experime
are presented to compare the present approach and that based on using solution grac
Finally, Section 6 contains conclusions and remarks.

2. MOVING-MESH METHOD BASED ON MOVING-MESH PDEs

We assume that the underlying physical problem is defined on a simply connected o
domainQ c R?. After prescribing a (fixed) computational domd ¢ R? and a corre-
sponding mesh on it, we define a moving mesl@as the image of the mesh én through
a time-dependent mapping= x(&, t). In this sense, generating an adaptive moving mes
on 2 is equivalent to determining a time-dependent mappgiegx(¢, t).

Following [25], we definex = x(&, t) as the inverse mapping of the solutigr= £(x, t)
of the parabolic equation

% _1v. Gtve, @)

at T

supplemented with appropriate boundary and initial conditions. Hete( is a parameter
used to control the smoothness of mesh movement in time, and the monitor fuBction
G(x, t) is atwo-by-two symmetric positive definite matrix which provides control of variou
mesh properties, particularly mesh concentration and alignment. In general, smedlelts

in prompter mesh adaptation to changes in the monitor function, while largeyduces
slower (smoother) mesh movement in time.
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In practice, it is more convenient to directly compute the mapgiggt) instead of its
inverse&(x, t), because it gives explicit locations of the mesh points. Interchanging tl
roles of the variablex andg, (1) can be written as [23]

ax 1 92X 32x 92X X
Uae2 9E 9 a2 o

0X
— == ta ot +bhi - +b— ), 2)
at T an

where

0X . 1
J = dEt<8§) a_j

a”- :a'G_ a‘,

- Gt Gt
b = —a - (—a1+ —a2> .
& an

This system of nonlinear parabolic PDEs is referred to as the moving-mesh PDE [25].

The overall effect of the monitor functidd on the resulting generated meshes is compli
cated, depending on various factors such as the geometrigswofl 2. and the boundary
correspondence between them. Nevertheless, the eigensys&piayfs a crucial descrip-
tive role. More specifically, ifk; and X, are the eigenvalues @, andv; andv, are the
corresponding eigenvectors, thenandv, control mainly the directions of mesh concen-
tration, whilex; and A, determine the concentration strength along these directions. -
achieve a higher mesh concentration alongwhdirection in certain regions, one needs
largexs in that region (see [12] for details).

Given the monitor function, the moving-mesh PDE (2) is solved numerically fer
x(&, 1) in conjunction with the physical PDE. Since the positions of mesh points ne
not be determined very precisely, it is usually unnecessary to solve the MMPDE to hi
accuracy. Here, (2) is discretized with linear finite elements in space, and the resulting C
system is integrated using a backward Euler method, with the parametdr.

Once the mesheRy, (t,) and2h(th 1) on 2 corresponding to timey andt, 1, respec-
tively, are obtained, the meshy (t) for t € (tn, th11) is defined via linear interpolation as
follows: The meshe$2,(th11) and Qh(t,) have the same connectivities as the computa
tional meshQ2. n, so for each elemerK; € Q. , there exist two corresponding elements
K (th) € Qn(ty) andK (thy1) € Qn(thr1). The vertices of elemer (1) are defined by

X = o X(E ) + X ),
tn+1 - n tn-&— - tn
wherex(&, t,) andx(é, t,,1) are the approximations of the mappirg= x(&, t) at time
levelst, andt,, 1, respectively, andg;} denotes the set of vertices &f;. All elements
K (t) defined this way constitute the meQR(t), which is needed for the integration of the
physical PDEs with multistage integrators.

3. MOVING FINITE-ELEMENT APPROXIMATION OF PHYSICAL PDEs

We now describe the finite-element discretization of the physical PDE on the movi
meshes. For simplicity, the description is given only for a scalar model problem, but it
straightforward to generalize it to systems of PDEs.
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The model problem is
d .
D(x, '[)a—ltJ =V.@xtyvu) + f(x,t,u, Vu), inQ x (to, T] 3)
with boundary conditions

u=d(,t), onlp,

aau— x,t), onI’
aﬁ—g L), N

4

whereD(x,t) > 0,a(x,t) > ap > 0, andl'p andI'y are disjoint sets whose unionds2.
It is assumed that there exists a unique solutiea u(x, t) for given initial conditions.

For the discretization of (3), we use Rothe’s approach, or the approach of horizol
method of lines. Specifically, (3) is discretized first in time and then in space. This
different from the commonly used method-of-lines approach, where the physical PC
are discretized first in space and then in time. A main advantage of the former appro
over the latter is that error estimation techniques developed for elliptic problems can
adopted and illustrated more easily. But we should also point out that the two approac
are mathematically equivalent provided that the same spatial and temporal discretize
schemes are used.

With Rothe’s approach, we first transform (3) from the physical coordinates to t
computational ones. Lét(&, t) = u(x(§, t), t), 5(5, t) = D(x(&, 1), 1), anda(g, t) = a(x
(&€, 1), 1). By the chain rule we rewrite (3) as

~ a0 Ao YA ~ [O0X - .
ﬁ:V-(aVu)—i-f(x,t,u,Vu)—kD(ﬁ-Vu) (5)
where
T
o (9T, _ [/ 0\
- () s [ (262) T o

andV¢ is the gradient operator with respecigto

A multistage singly diagonally implicit Runge—Kutta method (SDIRK) is employed fo
the temporal discretization of (5) because of its high accuracy and good stability (e.g.,
[20]). First, we rewrite (5) as

. a0
Dﬁz F(t»a)v t e(tO»T]s (6)
where
. A N A (OX o
Ft,)=Vv.@vd + f(x,t,a0,va)+ D (ﬁ . Vu) .
Lettg <ty <--- <ty = T be a partition of f, T], let §t, = th41 — to, and letd™ (&) be
an approximation ofi(¢, t,). Applying thes-stage SDIRK to (6), we have
i—1
D(tni)ki = F (o, 07 +6ta > ajk; +ytoki), 1<i<s,
s (7)
atd — g™ 4 oty Z b ki,
i=1
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wheretn; = t, + ¢idty anda;, b, ¢ (1 <i <s,1<j <i), andy are scheme constants.
Introducing
i—1
=00 46ty > ajkj, 0 =+ ystaki,
j=1
theith stage equation can be simplified to

CIi — U

D(tni
(tn,i) oty

= F(tn,i, I:li)- (8)

Letting uj (X) = G; (E(X, tni)) and v (X) = 3 (£(X, tn,i)), we transform (8) back into the
physical domain and obtain

u Vj

D(X, tyi) ——
( n,l) Vot

=V-@Xxth)Vui) + (X thi, Ui, Vup)

+ D(X, thi) (%(f(x» thi), thi) - Vui) . 9)

This is a second-order elliptic equation. The boundary conditionsifaan be readily
obtained from (4) as

Ui =dX, tn), onl'p,
(10)

ou;
a(xﬂ tn,l)aiﬁ = g(Xa tn,i )7 OnFN'

After finding uj, we computel; = u; (X(&, tni), tn,i) and ki = (0 — i)/ (y8tn). The ap-
proximate solutioi™*V att,.  is then obtained after alk (1 <i < s) have been calcu-
lated.

It remains to describe the finite-element discretization for (9) supplemented with (10).
simplify notation, we will omit writing the dependence tn in functionsD, a, andg—f. Let
H3 () be the subspace ¢11(2) whose elements vanish @h,. Taking theL2()-inner
product of (9) with test functiopp € H3 (), we obtain the weak formulation

AU, ) =0, Vo e H3(Q), (11)

where

u— v aX
A(u,gb):Q/KD ot —Dﬁ~Vu— f(x,t,u,Vu)>¢

+aVu- V¢] dx — /g¢ dr. (12)
I'n

Recall that2n (t, ) is the mesh attimg, ; defined by linear interpolation betwe®g (t,)
andQp(thr1). We denote the standard elementlf))(viz., the unit square for quadrilateral
elements and the unit triangle for triangular elements) and an arbitrary elermegndtin)
by K. Let Fx be the mapping fronik onto K. Then the approximation subspace based ol
meshQy(tn,i) can be described as

S"(thi) = {v € HY(Q) | vlk o Fx € P(K), VK € Qn(tni)},
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whereP(K) is a given set of polynomials oR. In our applications, we chooge(K) as
the set of linear functions; i.e., we use only linear elements.

Let SB (tn) = S"(tn,) N H3 (). Then the finite-element approximatiap; € S"(tn.;)
of the solutionu; of (9) is required to satisfy the Dirichlet boundary conditions in (10
and

A(unj, ) =0, V¥ € SP(tni). (13)

The system of nonlinear algebraic equations is solved by Newton'’s iteration, with t
resulting linear systems solved by BiCGStab2 [19], preconditioned with an incomplete |
decomposition.

For problems with varying time scalest, should be selected dynamically. This is
achieved with a standard approach as follows: Assume thatsteege SDIRK method (7)
is of orderp. Let by (1 <i < s) be a set of parameters of an embedd#dorder method
associated with scheme (7) (e.g., see [20]). het min(p, ). Thenét,, 1 is chosen to

satisfy
1/(p+1)
) . (14)
52

whereatol is a prescribed error tolerandg)|,- is the vector¢2-norm, andRh,i is theith
stage function value corresponding to the spatially discretized version of (7).

Sthr1 = dtymin| 2, max | 0.1,0.8 <atol/|

> (b — by)kn,
i—1

4. A POSTERIORI ERROR ESTIMATION

In this section, we present in more details our strategy for obtaining the error estime
and the monitor function. In the integration of the time-dependent PDEs, there are |
main types of errors, local and global. The local errors result from the spatial and tempc
discretizations of the underlying PDEs, while the global error measures the accumulatio
these effects, i.e., the actual difference between the exact solution and the numerical solt
In general, it is very difficult to estimate the global error for the parabolic PDEs even
spatial errors are ignored since it depends on the (problem dependent) accumulated e
of these local errors during the numerical integration. General numerical ODE integrat
only attempt to control local errors, with the assumption that the corresponding glo
errors do not grow prohibitively. Similarly, our strategy will be to control the spatial loce
error with mesh adaptation and the temporal local error with time step-size selection.
successes and limitations of the approach are discussed in Section 5.

To obtain an error indicator for the space discretization, we use the type Il error estimat
technique developed by Bank and co-workers [5, 6] for elliptic problems (and independel
by Oden and co-workers as the implicit element residual method [16, 28]). The analysi
[5] cannot be applied directly to (9) since the diffusion coefficient is proportional to the tin
step size. Nevertheless, a recent study of steady-state reaction—diffusion and convec
diffusion problems by Vetfith [33, 34] has shown that the estimated error obtained with
similar method is of the same magnitude in the energy norm as the real one, with a fa
depending weakly on the diffusion coefficient. On the basis of this result, we expect t
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the error estimator developed in [5] will provide a reasonably accurate local error indica
which in turn can be used for mesh movement.

Letuy; be the finite-element solution in (13) and the local errogbe u; — up ;. Define
the gradient operatoh of A as

sA w daX of
Aw, ¢) = E(Uh’i7¢)w = / [(Dyatn — Da -Vw — %(x,t, Unhi, VUpj)w
Q

8fxtu-Vu-V aVuw - Vo | dx
_ﬁ( > Ly, Uhii s h,l) w)¢+ w - ¢:| .
Thene € H(Q) satisfies

A(a ) ¢) ~ A(U| ) ¢) - A(uh,i ) ¢) = _A(uh.i ) ¢) (15)

Following [5], we determine an easily computable local error indicgtapproximating
g . For this purpose, we first introduce some notation. For each eleihenfy (t, ), let
(-, )k be theL.?-inner product ovek SS be the space of functions which are the pullbacks
of quadratic polynomials itk under the mapping fror to K, and

Sk = {v e S| v =0atthe vertices oK }.

For any element side of the mest2n(t,;), we also denote by, -)s the L2-inner product
overs. Denote byE, the set of interior element sides &, (t,;), and byEy the set of
boundary sides ofiy. Let i denote one of the unit normal vectorsstfor s € E; and the
outward unit normal vector te for s € Ey. Further, for anys € E,, let [v]s denote the
jump of v acrosss along theh direction. It is not difficult to see that whemis continuous,
the jump Eig—%]s is independent of the orientation i6f Let

Unhi — Vhi X
F = f(tn. X, Unj, Vn;) — D“"ft”“" + D - Vini = V(@Vun,),
Y
" (16)
rp = aauh’i
b=a"m"~0

It follows that

U |
A(“h,i? ¢) = _(rv ¢) - <rb’ ¢)FN - Z Z < |:a ;II:{ :|S ) ¢)>S (17)

KeQnp(thi) sedKNE,

The local error indicatog is defined piecewise i (tn ;) such thag|x € 3.( satisfies

1 Ui -
Ac® ) =T.0k+ D (odlsts D <[a ”“’L,¢>S, Vo e Sk (18)

on
sedKNEy sedKNE,

Note thatAg (-, -) is similar to A(-, -) except that the integration is taken only over the
elementK. For each element, the above equation contains either three or four unknov
(for triangles and quadrilaterals, respectively) associated with the midpoints of the elenr
sides.
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Note that the integration fromg to t, ; involvess steady-state equations only. To reduce
the overhead cost of error estimation, we apply the above procedure to one of these stag
8t, is small, or if the coefficient®, a, and f do not change much for different stages, ther
all &’s will be close to each other. However, since this error indicator is used to calcul:
the adaptive mesh for the following time step, it is preferable to use the one for the ti
closest to the next time step, i.e., for the last stage. Moreover, if the SDIRK scheme is st
accurate, we hav@"! = Q. In other words, the numerical solution in the last stage is th
solution at the new time level [20]. Thus, we calculétdor the last stage valug.

To construct the monitor function for mesh movement, we first calculate the energy nc
of the error functiong; over each element; i.e., we define a piecewise constant functi
e(-, th) by

e(X, th) = [(D(tn )&, &)k + ¥dtn(@Vas, VE)k]Y?, Vx e K. (19)

The monitor function is defined as

G(X th) = V1+ a(@X, ta)/[I8C, t)[[a)? I, (20)

where||e(-, th) |3 = Yk (Etn), &(tn))k So that]|€]|q is the energy norm ove® of the error
indicator &, | is the two-by-two identity matrix, and is an intensity parameter used to
emphasize or deemphasize the influence of the error function on the mesh concentre
For largera the mesh distribution is more closely influenced dit,), which generally
results in more computational effort being expended in solving the MMPDESs. Smallel
gives less variation iG, resulting in less mesh adaptation.

For comparison, we also use a monitor function defined using the gradient of the numei
solutions. Although not as commonly used or recommendelg-fefinement [3], gradients
have always been a popular choice for moving-mesh methods due to their simplicity
the relative sensitivity of moving-mesh equation to the use of higher derivative terms in:
monitor function [9]. Specifically, the monitor function is defined as

G = /1 +ag(IVunl/ [ Vunlle)? 1, (21)

whereVuy, is the gradient of the numerical solutiothuth2 = > « (Vun, Vup)k, and

ag is a parameter controlling the influence of the gradient on the mesh concentrati
Largerag produces stronger mesh concentration in regions of [fWgs| and requires
more computational effort in solving the MMPDEs.

The purpose of scaling by the-norm ofe(t) or Vun (t) in defining the monitor functions
in (20) and (21) is to make choosingandeg easier and general. This treatment is similar tc
the one used in [7, 8] for one-dimensional problems, where the argument is made that u
suitable conditions the control parameters can be optimally chosen. While in general
optimal choice ofr andeyg is clearly problem dependent, the numerical solutions obtaine
with our moving-mesh method are relatively insensitive to them, and we see from ¢
numerical experiments in Section 5 that takin@ndeyg in the range of 1 to 100 usually
produces a reasonable balance between the costs in solving MMPDESs and physical P
So while the choice af is not insignificant, itis a secondary effect and does not qualitativel
alter the comparison between (20) and (21).

As a common practice with moving-mesh methods based on MMPDEs, the moni
function G(t,) is smoothed. We use a simple smoothing method of local averaging. Mc
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precisely, for a nonnegative integhft, the monitor functionrG™ (t,) = GM(x, t,) is a
piecewise linear polynomial with the value at any grid pointefined as

G(m+l) (X, ty) =

= G™(y,t)dy, form=0,1,....,M -1, (22
o) Jo

wherew(X) is the union of the elements havimgas a vertex antw (x)| is its area. The
starting value isG© = G(t,). In our computation, we takkl = 6, for which experience
has shown that the approach performs well [13, 23].

5. NUMERICAL EXAMPLES

In this section, we present some numerical results obtained with-&uaptive finite-
element method which uses the error indicator developed in the previous sections.
examples are selected to demonstrate the feasibility of the method, especially in predic
the location of large solution error regions.

In our computations, a two-stage second-order SDIRK scheme is used for time inte
tion. The corresponding embedded scheme is of first order. The parameters are [2]

y=02-V2/2, au=1-y, =y, =1
blzl_y9 b2=)/, 61217 6220

ExampLE 1. Our first example involves the linear parabolic equation

M _ g2 f(t,x) (23)
ot

defined on the unit squar®, 1) x (0, 1). The right-hand sidé (t, x) and the initial and the
Dirichlet boundary conditions are chosen so that there is an exact solution,

1 1
u(t,x) = tanh{lS (x - 2)} tanh[lS <y — 2)} .

This time-independent solution is chosen so that reliability of the error estimation proced
can be verified. This simple model problem is also used to compare the performance
the moving-mesh methods based on the error indicator and solution gradients.
Aninitial 40 x 40 mesh with uniform rectangular elementsis used in all the computatior
The problem is integrated with a fixed step sizgl0untilt = 1, at which time the change in
the numerical solutiony, between two subsequent time steps is below? 1@the L 2-norm.
We first examine the error indicator on a fixed mesh. Surface plots of the energy nc
distribution for the true errau(t) — un(t) and the error indicata(t) att = 1 are displayed
in Fig. 1. The energy norms ovexfor u(t) — un(t) and foré(t) att = 1 are 3096 x 102
and 2139 x 1072, respectively. Although the magnitude of the estimated local error diffe!
from that of the true global erroé(t) locates very well the regions of large global error
where high resolution is most needed.
Next, we test the moving-mesh techniques based on the error indicator in (20) and (
dient function in (21). The maximum norrh?-norm, and energy norm af(t) — un(t) at
t = 1 are summarized in Table | for solutions obtained using different values of the intens
parameters andog. From Table I, one can see that for the moving-mesh method bas
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FIG. 1. Example 1: Energy norm distribution of true errgit) — un(t) (left) and error indicatoé(t) (right)
for the solution on a fixed mesh = 1.

on the error indicator, larger results in better mesh adaptation and smaller errors. For
moving-mesh method based on gradients, this is not quite true, andamggy even result
in larger errors.

Due to the relative simplicity of the problem, the numerical solutions obtained wi
moving-meshes are only slightly more accurate than those obtained with a fixed mesh |
ing the same number of elements, and indeed, the adaptive algorithm may not even t
about improved efficiency, but for more challenging problems a fixed-mesh computat
can be prohibitively expensive or completely unrealistic [13, 15]. Also, it is possible
substantially reduce the overhead in solving MMPDEs, e.g., by using two-level grids [2
The point here is that the approach using the error indicator gives qualitative improvernr
over that using gradients.

In Fig. 2 we plot the adaptive meshtat= 1 for the cases = 50 andag = 50, and in
Fig. 3 we plot the true error. Using the monitor function based on the error indicator, t
regions of large error are correctly located, and the mesh points are appropriately con
trated. This is in contrast to the adaptive mesh obtained with the monitor function ba:
on solution gradients, where the concentration or adaptation does not always occur ir
regions of large solution errors. As a consequence, the numerical accuracy may notimp
since more points are taken away from the regions needing higher resolution. Indeed, v
ag is increased from 50 to 500, the pointwise error of the numerical solution increases;
Table I.

TABLE |
Norms of the Error u — u, att =1

lu—unlle lu—unll.2 lu—unlle

Fixed mesh 1.3076802 4.3225@-03 3.09652-02
Moving-mesh monitor (20)

a= 10 48772803 1.62814-03 1.86536-02

a= 50 4.22896-03 1.37534-03 1.6874@-02

o =100 4.11866-03 1.33788-03 1.65708-02

o =500 4.0244@-03 1.30868-03 1.63118-02
Moving-mesh monitor (21)

ag= 10 5.0412@-03 2.14488-03 2.00208-02

ag= 50 4.9898e-03 2.10108-03  1.82722-02

ag = 100 5.12908-03 2.16794-03 1.7888%-02

ag = 500 5.43788-03 2.45696-03 1.7669@-02
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FIG. 2. Example 1: Adaptive meshes obtained with monitor function based on error indé¢gt¢ieft) and
gradient|Vuy| (right).

Fortunately, for many problems, regions with large gradients are adjacent to those wt
large higher order solution derivatives occur and the numerical solution has poorer ac
racy. By smoothing the monitor functions based on gradients, the higher mesh concentre
regions often overlap with these regions of large errors. This helps explain why in most
plications moving-mesh methods based on solution gradients are able to effectively impr
the solution accuracy and consequently are often used.

Finally, we note that while the solution accuracy is not overly sensitive to the choic
of these parameters or g, one should not choose excessively large values, since tl
computational work in solving the moving-mesh PDEs will increase accordingly. In o
experience, values between 1 and 100 usually produce good balance between the qt
of mesh concentration and the cost of solving the MMPDEs.

ExampPLE 2. The second example is the well-known Burgers equation

au 2 :
i vVeU — uuy — uuy, in Q2 x (0.25,1.25], (24)
whereQ is the unit squar€0, 1) x (0, 1). The initial and the Dirichlet boundary conditions
are chosen such that the exact solution is

u(x, t) = [1 + ex+y-v/@ -1 (25)

We consider the case with a moderately small diffusion coefficieat0.005.

0004

200804

0000400

FIG.3. Example 1: Contour plots of energy norm distribution of true em@y — u,(t) att = 1 for solutions
obtained with monitor functions based on error indicator (left) and solution gradient (right).
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An adaptive initial mesh consisting of 2048 triangular elements is used in this examg
The time step size is fixed & = 0.01. The parameter = 50 in (20).

The energy norm distribution of the true ertatt) — un(t) and the local error indicator
é(t) are displayed in Fig. 4 for four different times. Note tlégt) indicates the regions
where the true error is large and higher mesh concentration is needed. Figure 5 shows
the mesh is correctly concentrated in regions with correspondingly large errors.

For comparison, we also solve this problem using a corresponding fixed uniform me
and a moving mesh obtained with monitor function (21) based on the gradient of 1
numerical solution (witheq = 50). The energy norms of the solution errors are plot
ted in the left diagram of Fig. 7. The solution based on moving meshes obtained us
an error indicator is better than that using the solution gradient, while both are mo
accurate than the solution obtained on a fixed uniform mesh (though not substantially
for Example 1 the problem is reasonably easy). To examine the difference between the
mesh adaptation cases, in Fig. 6 we magnify the mesh and the error indi¢ataround
the midpoint of the physical domain. The figure again confirms the observation made
Example 1: the monitor function based on the local error indicator more accurately pinpoi
the locations of regions needing higher resolution than that based on the solution grad

For this calculation the mesh lines are aligned with the direction of the wave front, :
though this is not a major factor in the success of the moving-mesh method. To demonst
this point, we tested the problem with the same parameter setting using mesh trian
oriented with the hypotenuse at an anglé,4ghich is orthogonal to the direction of the
wave front of the solution (25). The right diagram of Fig. 7 displays the energy norm

AT AN AYAAVATAVNANATAY 1 ATV AV AN AVAYAVANANANAN AN}
NN NN
07 o7
05 05
3 025
0 ] L
0 025 [ 075 1 0 0% 05 X3 1
1 1
AVAVAVAVAVAVAYAVAVAVANAVSAN N\
o1 X o7
05 05
025 O 025
NN ANNNNNY R NN
° RENENNANN A °
0 025 05 o7 1 0 025 05 075 1

FIG.5. Example 2: Moving-mesh based on error indicatdr &t0.5, 0.75, 1.0, 1.25.
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2008401

L.00s401

FIG. 6. Example 2: Top: Closeup of moving meshes at 1 obtained with monitor function based on error
indicator (left) and gradient of numerical solution (right). Bottom: Closeup of correspoadingeft) and| Vu (t)|
(right).

the true errom(t) — un(t) using the fixed-mesh and the two moving-mesh methods. Tt
relative improvement in accuracy using the moving-mesh methods is similar to that in
earlier case, and the meshes aligned with the wave front produce somewhat more acc
solutions than those that are not aligned. So, while this is not a focus of our comparisor
principle one may strive to improve the mesh alignment, e.g., by edge swapping, to proc
better results.

0.01 0.01

0.001 + . 0.001
0.25 0.5 0.75 1 1.25 0.25 0.5 075 1 1.25

FIG. 7. Example 2: Energy norm of erraxt) — uy(t) obtained with moving meshes and fixed mesh. Left:
triangular mesh with hypotenuse oriented at’13&ght: Triangular mesh with hypotenuse oriented at 45
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FIG. 8. Time step sizest selected with (14) for Example 3.

ExaMPLE 3. The third example is a nonlinear reaction—diffusion equation

au 1
— =VUu+ Zu(l-u? (26)
ot €

defined onQ = (0, 1) x (0, 1). We choose: = 102 as in [18]. On all of the boundary
segments, homogeneous Neumann conditions are imposed for all time.

The initial conditions are

oo [ DD =0
' —1, otherwise

This problem was used by Erikson and Johnson in [18] to test their adaptive method be
on local refinement and for a posteriori error estimation. The solution is very sensitive
perturbations. Indeed, small perturbations at the cross p@nés, i, =1or2, maylead

to different solution paths, and in [18] a nonsymmetric solution develops because of
nonsymmetric local refinement.

We solve this problem by the moving-mesh method based on the error indicator w
«a = 5in (20). The time integration is implemented with the same SDIRK method as
the previous examples but with variable step size. The initial time step size is choser
8to = 107°, and later time step sizes are selected by (14) with an error tolesidolce: 103,
See Fig. 8 for a plot of the step sizes selected by this scheme. The problem is symm
with respect to the diagonal lines as well as the horizontal and vertical lines passing thro
(3, 3). To preserve this symmetry, we use a uniform initial triangular mesh obtained
inserting both diagonals to the elements of a480 uniform rectangular mesh.

Figure 9 displays the numerical solution at four different times. The corresponding mc
ing mesh and the contour plot of the energy norm distributiof(gfare plotted in Fig. 10.
Note that the moving mesh conforms to the regions with large error distribution, and 1
symmetry in the solution pattern is preserved with o@daptive strategy.
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FIG. 9. Example 3: Solution(t) at four time instants, = 0, 0.0084Q 0.0221, 0.0387.

ExaMPLE 4. Finally, we consider a coupled nonlinear reaction—diffusion system mo
eling a combustion process [1, 25],

U _ g2y = _ Ryeavym
ot ad ’
T Lot Ruam
ot Le SLe ’

whereu and T represent, respectively, the dimensionless species concentration and
temperature of a chemical which is undergoing a one-step reaction. The physical doma
Q = (-1,1) x (—1,1). The initial and boundary conditions are

Ui=o=Tli=o=1, inQ, 27)
Ulsa = Tlae = 1, fort > 0O,

and the physical parameters are sdtéo= 0.9, = 1,5 = 20, andR = 5.
This problem has several interesting features; e.g., the tempefatises from 1 to

approximately H « at the center of2 in a very short period of time and the solutions
T andu have sharp wave fronts moving toward the boundi&®y These make adaptive
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FIG. 10. Example 3: Moving mesh and contour plot of energy norm distribution of error estirééjoat
t = 0.00840, 0.0221, 0.0387 (from top to bottom).

methods (in both the spatial and temporal directions) crucial for accurate simulation of
physical process.

For this problem, we use the same initial mesh as in Example 3. The time integrat
uses a variable step size determineétn} = 10~ andsty = 10-%. In defining the monitor
function, we takex = 50 in (20).

Figure 11 displays the moving mesh and the solufioat four different times. The
resulting step size plotted in Fig. 12 illustrates the importance of a variable time step ¢
selection strategy to efficiently solve this type of problem. Once again, this monitor functi
performs somewhat better than the gradient monitor function (21), although we do not ¢
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FIG. 12. Time step sizest selected with (14) for Example 4.

detailed results here. Also, for this problem, using no spatial adaptivity would necessita
much finer mesh to achieve comparable accuracy.

6. CONCLUSIONS AND REMARKS

We have presented anadaptive finite-element method based on moving-mesh PDE
and an error indicator for solving parabolic problems. The basic idea behind the method i
define the monitor function for mesh movement as a function of an a posteriori estimate
the local spatial approximation error. The estimation is done by applying a technique de
opedin[5, 6, 16, 28] for elliptic problems (which result here from temporal discretization
the underlying physical PDEs). The numerical results demonstrate that the error indic:
accurately predicts the regions of large solution variation. Comparison between mon
functions based on the error indicator and on solution gradients has been made. The nu
ical results show that while the method based on solution gradients is simpler and easi
implement, the one based on an error indicator more accurately pinpoints regions nee
higher mesh concentration and is generally more robust. Some guidelines in choosing
parameter in the monitor function definition are provided.

It is worth pointing out that the error indicator used here for mesh movement is only

approximation to the local spatial discretization error at a given time. This local appro:
mation can give a reasonable indication of the magnitude of the true error where it is larg
and more mesh concentration is needed; in our experience this approximation tends t
less reliable when the spatial and temporal discretization errors are of substantially diffel
size. To better understand this, it would be desirable to extend the analysis wftV§3i3,
34] to elliptic PDEs of the form (9) having convection terms due to the mesh moveme
For at the end of the day, the ability to estimate global errors for mesh movement algoritt
depends on estimating both the temporal and spatial discretization errors and understar
how they can accumulate.
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While the robustness of moving-mesh methods based on MMPDESs has been establi
[13, 15, 23], several limitations warrant future investigation. First, as a fundamental feat
of ther -adaptive finite-element method, the number of grid points is fixed r Taaptive
method seeks in principle the optimal mesh within the given mesh topology. Thus,
error estimator may provide accurate relative distribution of mesh points, but it is gener:
impossible to keep the error below a certain magnitude without changing the topology
the meshes. Second, the adaptive approach used here attempts to minimize the errc
time-dependent problems using tools developed for steady-state problems. In other wi
the errors in the spatial and temporal directions are treated separately. So while this appr
is simple and reasonably robust, in its present form it is generally not able to provide g
global error control. Achieving this requires varying the number of grid points and tin
step sizes. Along these lines, we are in the process of developing an algorithm which
incorporate the techniques presented here as well as the features bf hotlr -methods.

ACKNOWLEDGMENTS

This work was supported in part by NSERC (Canada) Grant OGP-0008781 and NSF (USA) Gr
DMS-9626107.

REFERENCES

1. S. Adjerid and J. E. Flaherty, A moving finite element method with error estimation and refinement -
one-dimensional time dependent partial differential equati®hsi J. Numer. AnaR3, 778 (1986).

2. R. Alexander, Diagonally implicit Runge—Kutta methods for stiff O.D.ESB\M J. Numer. Anall4, 1006
(1977).

3. |. Babwska and W. C. Rheinboldt, Adaptive approaches and reliability estimations in finite element analy
Comput. Methods Appl. Mech. Erig, 519 (1979).

4. M. J. BainesMoving Finite Element§Oxford Univ. Press, Oxford, 1994).

5. R. E.Bankand A. Weiser, Some a posteriori error estimators for elliptic differential equaiatiis Comput.
44, 283 (1985).

6. R. E. Bank and K. Smith, A posteriori error estimates based on hierarchical 5&kk,). Numer. AnaB0,
921 (1993).

7. G. Beckett and J. A. Mackenzie, On a uniform accurate finite difference approximation of a singula
perturbed reaction—diffusion problem using grid equidistributibtGomput. Appl. Mathto appear.

8. G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, On the numerical solution of one-dimensic
PDEs using adaptive methods based on equidistribution, submitted for publication.

9. J. G. Blom and J. G. Verwe@n the use of the Arclength and Curvature Monitor in a Moving-grid Method
Which is Based on the Method of Lin€&eport NM-N8902, CWI, Amsterdam (1989).

10. C.de BoorGood Approximation by Splines with Variable KnotSpringer lecture Notes Series 363 (Springer-
Verlag, Berlin, 1973).

11. J. U. Brackbill, An adaptive grid with direction contrdl,Comput. Physl08 38 (1993).

12. W. Cao, W. Huang, and R. D. Russell, A study of monitor functions for two dimensional adaptive me
generationSIAM J. Sci. Compug0, 1978 (1999).

13. W. Cao, W. Huang, and R. D. Russell, Aadaptive finite element method based upon moving-mesh PDE:
J. Comput. Physl49 221 (1999).

14. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code. II.
two dimensionsSIAM J. Sci. Compuil9, 766 (1998).

15. H. Ceniceros and T. Hou, An efficient dynamically adaptive method for potentially singular solutior
J. Comput. Physto appear.



892 CAO, HUANG, AND RUSSELL

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34

. L. F. Demkowicz, J. T. Oden, and T. Stroubolis, Adaptive finite elements for flow problems with movir
boundaries. |. Variational principles and a posterior estim&@esiput. Methods Appl. Mech. Engs, 217
(1984).

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equat
in Acta NumericgCambridge Univ. Press, Cambridge, 1995), pp. 105-158.

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems V. long-time integrat
SIAM J. Numer. AnaB2, 1743 (1995).

M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectr8MM J. Sci. Computl4,
1020 (1993).

E. Hairer and G. WanneBolving Ordinary Differential EquationgSpringer-Verlag, Berlin, 1987), \Vols. |
and II.

D. F. Hawken, J. J. Gottlieb, and J. S. Hansen, Review of some adaptive node movement techniques in
element and finite difference solutions of PDEsSComput. Phy5, 254 (1991).

P. Houston, J. Mackenzie, E. Suli, and G. Warnecke, A posteriori error analysis for numerical approximat
of Friedrichs systemd&yumer. Math82, 433 (1999).

W. Huang, Practical aspects of formulation and solution of moving mesh partial differential equatio
J. Comput. Physto appear.

W. Huang, Y. Ren, and R. D. Russell, Moving mesh partial differential equations (MMPDEs) based upon
equidistribution principleSIAM J. Numer. AnaBB1, 709 (1994).

W. Huang and R. D. Russell, Moving mesh strategy based upon a gradient flow equation for two dimensi
problemsSIAM J. Sci. CompuR0, 998 (1999).

C. Johnson, Adaptive finite element methods for diffusion and convection prolemgut. Methods Appl.
Mech. Eng82, 301 (1990).

K. Miller, Moving finite elements IISIAM J. Numer. Anall8, 1033 (1981).

J. T. Oden, L. F. Demkowicz, T. Stroubolis, and P. Devloo, Adaptive methods for problems in solid a
fluid mechanics, ifccuracy Estimates and Adaptive Refinements in Finite Element Computatiies by

I. Babwska, O. C. Zienkiewicz, J. Gago, and E. R. de A. Oliveira (Wiley, Chichester, 1986), pp. 249-280.
J. T. Oden, L. F. Demkowicz, W. Rachowicz, and T. Westerman, A posteriori error analysis in finite eleme
The element residual method for symmetrizable problems with applications to compressible Euler and Nav
Stokes equation§&omput. Methods Appl. Mech. ErgR, 183 (1990).

A. Safjan, L. F. Demkowicz, and J. T. Oden, Adaptive finite element methods for hyperbolic systems w
application to transient acoustidsf. J. Numer. Methods Eng2, 677 (1991).

B. Semper and G. Liao, A moving grid finite-element method using grid deformationer. Meth. Partial
Differential Equationsl1, 603 (1995).

J. F. Thompson, Z. A. Warsi, and C. W. MastMuymerical Grid Generatior{North-Holland, New York,
1985).

R. Veriirth, A posteriori error estimators for a singularly perturbed reaction—diffusion equistiomer. Math.
78,479 (1998).

. R. Verfirth, A posteriori error estimators for convection—diffusion equatiumer. Math80, 641 (1998).



	1. INTRODUCTION
	2. MOVING-MESH METHOD BASED ON MOVING-MESH PDEs
	3. MOVING FINITE-ELEMENT APPROXIMATION OF PHYSICAL PDEs
	4. A POSTERIORI ERROR ESTIMATION
	5. NUMERICAL EXAMPLES
	FIG. 1.
	TABLE I
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	6. CONCLUSIONS AND REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

